
CS106B
Spring 2013

Handout #10S
April 15, 2013

Section Solutions 2
_________________________________________________________________________________________________________

Problem One: Xzibit Words

One possible implementation is shown here:

string mostXzibitWord(Lexicon& words) {
  /* Track the best string we've found so far and how many subwords it has. */
  string result;
  int numSubwords = 0;

  foreach (string word in words) { 
    /* Store all the subwords we find.  To avoid double-counting
     * words, we'll hold this in a Lexicon.
     */
    Lexicon ourSubwords; 

    /* Consider all possible start positions. */
    for (int start = 0; start < word.length(); start++) { 
      /* Consider all possible end positions.  Note that we include
       * the string length itself, since that way we can consider
       * substrings that terminate at the end of the string.
      for (int stop = start; stop <= word.length(); stop++) { 
        /* Note the C++ way of getting a substring. */
        string candidate = word.substr(start, stop – start);

        /* As an optimization, if this isn't a prefix of any legal
         * word, then there's no point in continuing to extend this
         * substring.
         */
        if (!words.containsPrefix(candidate)) 
          break; 

        /* If this is a word, then record it as a subword. */
        if (words.contains(candidate)) 
          ourSubwords.add(candidate); 
      } 
    } 

    /* Having found all subwords, see if this is better than our
     * best guess so far.
     */
    if (numSubwords < ourSubwords.size()) { 
      result = word; 
      numSubwords = ourSubwords.size(); 
    } 
  } 

  return result;
}

In case you're curious, the most Xzibit word is “foreshadowers,” with 34 subwords!

- 1 - 



Problem Two: RNA Protein Codes

Here is one possible implementation:

Vector<string> findProteins(string rna, Map<string, string>& codons) { 
  Vector<string> result; 

  /* Track at which index we are in the string.  We'll be going one character 
   * at a time through the string. 
   */ 
  int index = 0; 
  while (true) { 
    /* Find the next start codon, stopping if none are left. */ 
    index = rna.find("AUG", index); 
    if (index == string::npos) { 
      return result; 
    } 

    /* Keep decoding codons until we hit a stop codon. */ 
    string protein; 
    while (true) { 
      /* Read the codon. */ 
      string codon = rna.substr(index, 3); 
      index += 3; 

      /* If it's a stop codon, we're done with this protein. */ 
      if (codons[codon] == "stop") 
        break; 

      /* Otherwise, add it to the result.  To get the commas right, we'll 
       * only add commas if the string isn't empty. 
       */ 
      if (!protein.empty()) protein += ", "; 
      protein += codons[codon]; 
    } 

    /* Add this protein to the result. */ 
    result += protein; 
  } 
}

A process similar to this one is actually going on right now in every single cell in your body.  Isn't that 
amazing?

- 2 - 


